52 research outputs found

    Behavioural Response Thresholds in New Zealand Crab Megalopae to Ambient Underwater Sound

    Get PDF
    A small number of studies have demonstrated that settlement stage decapod crustaceans are able to detect and exhibit swimming, settlement and metamorphosis responses to ambient underwater sound emanating from coastal reefs. However, the intensity of the acoustic cue required to initiate the settlement and metamorphosis response, and therefore the potential range over which this acoustic cue may operate, is not known. The current study determined the behavioural response thresholds of four species of New Zealand brachyuran crab megalopae by exposing them to different intensity levels of broadcast reef sound recorded from their preferred settlement habitat and from an unfavourable settlement habitat. Megalopae of the rocky-reef crab, Leptograpsus variegatus, exhibited the lowest behavioural response threshold (highest sensitivity), with a significant reduction in time to metamorphosis (TTM) when exposed to underwater reef sound with an intensity of 90 dB re 1 µPa and greater (100, 126 and 135 dB re 1 µPa). Megalopae of the mud crab, Austrohelice crassa, which settle in soft sediment habitats, exhibited no response to any of the underwater reef sound levels. All reef associated species exposed to sound levels from an unfavourable settlement habitat showed no significant change in TTM, even at intensities that were similar to their preferred reef sound for which reductions in TTM were observed. These results indicated that megalopae were able to discern and respond selectively to habitat-specific acoustic cues. The settlement and metamorphosis behavioural response thresholds to levels of underwater reef sound determined in the current study of four species of crabs, enables preliminary estimation of the spatial range at which an acoustic settlement cue may be operating, from 5 m to 40 km depending on the species. Overall, these results indicate that underwater sound is likely to play a major role in influencing the spatial patterns of settlement of coastal crab species

    Acoustic impacts of offshore wind energy on fishery resources an evolving source and varied effects across a wind farm's lifetime

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mooney, T. A., Andersson, M. H., & Stanley, J. Acoustic impacts of offshore wind energy on fishery resources an evolving source and varied effects across a wind farm's lifetime. Oceanography, 33(4), (2020): 82-95, https://doi.org/10.5670/oceanog.2020.408.Offshore wind farms are proliferating around the world, and their presence is expected to expand substantially within US waters. Wind farm lifetimes involve 40–50-year commitments, including site surveys, construction, operation, and eventual decommissioning. Because their areas often overlap with essential fisheries habitats, there is a need to understand, mitigate, and manage offshore wind farm impacts on fisheries and ecosystems. Activities during all phases of wind farm lifetimes produce underwater sound, a concern because high noise levels and/or persistent anthropogenic noise can impact marine life in many ways. Here, we review the current understanding of impacts of wind energy activities on fisheries resources, taking into account the varied noise conditions that occur from site survey to decommissioning. For certain portions of wind farm development, such as construction and operation, there is a small amount of available data that allows stakeholders to evaluate impacts for at least some taxa. Yet, we are data deficient for most species’ populations, life stages, and other phases as they relate to wind farm development. Thus, it is difficult to evaluate impacts with any certainty, underscoring the need for further studies to adequately address impacts of offshore wind farms on vulnerable and ecologically and economically important taxa.This work was partially funded by a US Bureau of Ocean Energy Management grant to Mooney and Stanley. N. Reneir illustrated several figures

    A decade of monitoring Atlantic cod Gadus morhua spawning aggregations in Massachusetts Bay using passive acoustics

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Caiger, P. E., Dean, M. J., DeAngelis, A. I., Hatch, L. T., Rice, A. N., Stanley, J. A., Tholke, C., Zemeckis, D. R., & Van Parijs, S. M. A decade of monitoring Atlantic cod Gadus morhua spawning aggregations in Massachusetts Bay using passive acoustics. Marine Ecology Progress Series, 635, (2020): 89-103, doi:10.3354/meps13219.Atlantic cod Gadus morhua populations in the northeast USA have failed to recover since major declines in the 1970s and 1990s. To rebuild these stocks, managers need reliable information on spawning dynamics in order to design and implement control measures; discovering cost-effective and non-invasive monitoring techniques is also favorable. Atlantic cod form dense, site-fidelic spawning aggregations during which they vocalize, permitting acoustic detection of their presence at such times. The objective of this study was to detect spawning activity of Atlantic cod using multiple fixed-station passive acoustic recorders to sample across Massachusetts Bay during the winter spawning period. A generalized linear modeling approach was used to investigate spatio-temporal trends of cod vocalizing over 10 consecutive winter spawning seasons (2007-2016), the longest such timeline of any passive acoustic monitoring of a fish species. The vocal activity of Atlantic cod was associated with diel, lunar, and seasonal cycles, with a higher probability of occurrence at night, during the full moon, and near the end of November. Following 2009 and 2010, there was a general decline in acoustic activity. Furthermore, the northwest corner of Stellwagen Bank was identified as an important spawning location. This project demonstrated the utility of passive acoustic monitoring in determining the presence of an acoustically active fish species, and provides valuable data for informing the management of this commercially, culturally, and ecologically important species.Thanks to Eli Bonnell, Genevieve Davis, Julianne Bonell, Samara Haver, and Eric Matzen for assistance in MARU deployments, Dana Gerlach and Heather Heenehan for help in passive acoustic data analysis, and the NEFSC passive acoustics group for useful discussions. Funding for 2007−2012 passive acoustic surveys was provided by Excelerate Energy and Neptune LNG to Cornell University. Fieldwork for 2013−2015 was funded through the 2013−2014 NOAA Saltonstall-Kennedy grant program (Award No. NA14NMF4270027), and jointly funded by The Nature Conservancy, Massachusetts Division of Marine Fisheries, and the Cabot Family Charitable Foundation. Funding for 2016 SoundTrap data was provided by NOAA’s Ocean Acoustics Program (4 Sanctuaries Project)

    Ontogenetic variation in the hearing sensitivity of black sea bass (Centropristis striata) and the implications of anthropogenic sound on behavior and communication

    Get PDF
    Author Posting. © Company of Biologists, 2020. This article is posted here by permission of Company of Biologists for personal use, not for redistribution. The definitive version was published in Journal of Experimental Biology (2020): jeb.219683, doi: 10.1242/jeb.219683.Black sea bass (Centropristis striata) is an important fish species in both commercial and recreational fisheries of southern New England and the mid-Atlantic Bight. Due to the intense urbanization of these waters, this species is subject to a wide range of anthropogenic noise pollution. Concerns that C. striata are negatively affected by pile driving and construction noise predominate in areas earmarked for energy development. However, as yet, the hearing range of C. striata is unknown, making it hard to evaluate potential risks. This study is a first step in understanding the effects of anthropogenic noise on C. striata by determining the auditory bandwidth and thresholds of this species using auditory evoked potentials (AEPs), creating pressure and acceleration audiograms. These physiological tests were conducted on wild-caught C. striata in three size/age categories. Results showed that juvenile C. striata significantly had the lowest thresholds, with hearing sensitivity decreasing in the larger size classes. Furthermore, Centropristis striata has fairly sensitive hearing relative to other related species. Preliminary investigations into the mechanisms of their hearing ability were undertaken with gross dissections and an opportunistic micro computed tomography image to address the auditory structures including otoliths and swimbladder morphology. Crucially, the hearing range of C. striata, and their most sensitive frequencies, directly overlap with high-amplitude anthropogenic noise pollution such as shipping and underwater construction.This work was funded by the Bureau of Ocean Energy Management Environmental Studies Program through Interagency Agreement Number M17PG00029 with the U.S. Department of Commerce, National Oceanic and Atmospheric Administration.2021-05-2

    Listening forward: approaching marine biodiversity assessments using acoustic methods

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mooney, T. A., Di Iorio, L., Lammers, M., Lin, T., Nedelec, S. L., Parsons, M., Radford, C., Urban, E., & Stanley, J. Listening forward: approaching marine biodiversity assessments using acoustic methods. Royal Society Open Science, 7(8), (2020): 201287, doi:10.1098/rsos.201287.Ecosystems and the communities they support are changing at alarmingly rapid rates. Tracking species diversity is vital to managing these stressed habitats. Yet, quantifying and monitoring biodiversity is often challenging, especially in ocean habitats. Given that many animals make sounds, these cues travel efficiently under water, and emerging technologies are increasingly cost-effective, passive acoustics (a long-standing ocean observation method) is now a potential means of quantifying and monitoring marine biodiversity. Properly applying acoustics for biodiversity assessments is vital. Our goal here is to provide a timely consideration of emerging methods using passive acoustics to measure marine biodiversity. We provide a summary of the brief history of using passive acoustics to assess marine biodiversity and community structure, a critical assessment of the challenges faced, and outline recommended practices and considerations for acoustic biodiversity measurements. We focused on temperate and tropical seas, where much of the acoustic biodiversity work has been conducted. Overall, we suggest a cautious approach to applying current acoustic indices to assess marine biodiversity. Key needs are preliminary data and sampling sufficiently to capture the patterns and variability of a habitat. Yet with new analytical tools including source separation and supervised machine learning, there is substantial promise in marine acoustic diversity assessment methods.Funding for development of this article was provided by the collaboration of the Urban Coast Institute (Monmouth University, NJ, USA), the Program for the Human Environment (The Rockefeller University, New York, USA) and the Scientific Committee on Oceanic Research. Partial support was provided to T.A.M. from the National Science Foundation grant OCE-1536782

    Sounding the call for a global library of underwater biological sounds

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Parsons, M., Lin, T.-H., Mooney, T., Erbe, C., Juanes, F., Lammers, M., Li, S., Linke, S., Looby, A., Nedelec, S., Van Opzeeland, I., Radford, C., Rice, A., Sayigh, L., Stanley, J., Urban, E., & Di Iorio, L. Sounding the call for a global library of underwater biological sounds. Frontiers in Ecology and Evolution, 10, (2022): 810156, https://doi.org/10.3389/fevo.2022.810156.Aquatic environments encompass the world’s most extensive habitats, rich with sounds produced by a diversity of animals. Passive acoustic monitoring (PAM) is an increasingly accessible remote sensing technology that uses hydrophones to listen to the underwater world and represents an unprecedented, non-invasive method to monitor underwater environments. This information can assist in the delineation of biologically important areas via detection of sound-producing species or characterization of ecosystem type and condition, inferred from the acoustic properties of the local soundscape. At a time when worldwide biodiversity is in significant decline and underwater soundscapes are being altered as a result of anthropogenic impacts, there is a need to document, quantify, and understand biotic sound sources–potentially before they disappear. A significant step toward these goals is the development of a web-based, open-access platform that provides: (1) a reference library of known and unknown biological sound sources (by integrating and expanding existing libraries around the world); (2) a data repository portal for annotated and unannotated audio recordings of single sources and of soundscapes; (3) a training platform for artificial intelligence algorithms for signal detection and classification; and (4) a citizen science-based application for public users. Although individually, these resources are often met on regional and taxa-specific scales, many are not sustained and, collectively, an enduring global database with an integrated platform has not been realized. We discuss the benefits such a program can provide, previous calls for global data-sharing and reference libraries, and the challenges that need to be overcome to bring together bio- and ecoacousticians, bioinformaticians, propagation experts, web engineers, and signal processing specialists (e.g., artificial intelligence) with the necessary support and funding to build a sustainable and scalable platform that could address the needs of all contributors and stakeholders into the future.Support for the initial author group to meet, discuss, and build consensus on the issues within this manuscript was provided by the Scientific Committee on Oceanic Research, Monmouth University Urban Coast Institute, and Rockefeller Program for the Human Environment. The U.S. National Science Foundation supported the publication of this article through Grant OCE-1840868 to the Scientific Committee on Oceanic Research

    Interaction Testing and Polygenic Risk Scoring to Estimate the Association of Common Genetic Variants with Treatment Resistance in Schizophrenia

    Get PDF
    Importance: About 20% to 30% of people with schizophrenia have psychotic symptoms that do not respond adequately to first-line antipsychotic treatment. This clinical presentation, chronic and highly disabling, is known as treatment-resistant schizophrenia (TRS). The causes of treatment resistance and their relationships with causes underlying schizophrenia are largely unknown. Adequately powered genetic studies of TRS are scarce because of the difficulty in collecting data from well-characterized TRS cohorts. Objective: To examine the genetic architecture of TRS through the reassessment of genetic data from schizophrenia studies and its validation in carefully ascertained clinical samples. Design, Setting, and Participants: Two case-control genome-wide association studies (GWASs) of schizophrenia were performed in which the case samples were defined as individuals with TRS (n = 10501) and individuals with non-TRS (n = 20325). The differences in effect sizes for allelic associations were then determined between both studies, the reasoning being such differences reflect treatment resistance instead of schizophrenia. Genotype data were retrieved from the CLOZUK and Psychiatric Genomics Consortium (PGC) schizophrenia studies. The output was validated using polygenic risk score (PRS) profiling of 2 independent schizophrenia cohorts with TRS and non-TRS: a prevalence sample with 817 individuals (Cardiff Cognition in Schizophrenia [CardiffCOGS]) and an incidence sample with 563 individuals (Genetics Workstream of the Schizophrenia Treatment Resistance and Therapeutic Advances [STRATA-G]). Main Outcomes and Measures: GWAS of treatment resistance in schizophrenia. The results of the GWAS were compared with complex polygenic traits through a genetic correlation approach and were used for PRS analysis on the independent validation cohorts using the same TRS definition. Results: The study included a total of 85490 participants (48635 [56.9%] male) in its GWAS stage and 1380 participants (859 [62.2%] male) in its PRS validation stage. Treatment resistance in schizophrenia emerged as a polygenic trait with detectable heritability (1% to 4%), and several traits related to intelligence and cognition were found to be genetically correlated with it (genetic correlation, 0.41-0.69). PRS analysis in the CardiffCOGS prevalence sample showed a positive association between TRS and a history of taking clozapine (r2 = 2.03%; P =.001), which was replicated in the STRATA-G incidence sample (r2 = 1.09%; P =.04). Conclusions and Relevance: In this GWAS, common genetic variants were differentially associated with TRS, and these associations may have been obscured through the amalgamation of large GWAS samples in previous studies of broadly defined schizophrenia. Findings of this study suggest the validity of meta-analytic approaches for studies on patient outcomes, including treatment resistance

    Safety and efficacy of fluoxetine on functional outcome after acute stroke (AFFINITY): a randomised, double-blind, placebo-controlled trial

    Get PDF
    Background Trials of fluoxetine for recovery after stroke report conflicting results. The Assessment oF FluoxetINe In sTroke recoverY (AFFINITY) trial aimed to show if daily oral fluoxetine for 6 months after stroke improves functional outcome in an ethnically diverse population. Methods AFFINITY was a randomised, parallel-group, double-blind, placebo-controlled trial done in 43 hospital stroke units in Australia (n=29), New Zealand (four), and Vietnam (ten). Eligible patients were adults (aged ≥18 years) with a clinical diagnosis of acute stroke in the previous 2–15 days, brain imaging consistent with ischaemic or haemorrhagic stroke, and a persisting neurological deficit that produced a modified Rankin Scale (mRS) score of 1 or more. Patients were randomly assigned 1:1 via a web-based system using a minimisation algorithm to once daily, oral fluoxetine 20 mg capsules or matching placebo for 6 months. Patients, carers, investigators, and outcome assessors were masked to the treatment allocation. The primary outcome was functional status, measured by the mRS, at 6 months. The primary analysis was an ordinal logistic regression of the mRS at 6 months, adjusted for minimisation variables. Primary and safety analyses were done according to the patient's treatment allocation. The trial is registered with the Australian New Zealand Clinical Trials Registry, ACTRN12611000774921. Findings Between Jan 11, 2013, and June 30, 2019, 1280 patients were recruited in Australia (n=532), New Zealand (n=42), and Vietnam (n=706), of whom 642 were randomly assigned to fluoxetine and 638 were randomly assigned to placebo. Mean duration of trial treatment was 167 days (SD 48·1). At 6 months, mRS data were available in 624 (97%) patients in the fluoxetine group and 632 (99%) in the placebo group. The distribution of mRS categories was similar in the fluoxetine and placebo groups (adjusted common odds ratio 0·94, 95% CI 0·76–1·15; p=0·53). Compared with patients in the placebo group, patients in the fluoxetine group had more falls (20 [3%] vs seven [1%]; p=0·018), bone fractures (19 [3%] vs six [1%]; p=0·014), and epileptic seizures (ten [2%] vs two [<1%]; p=0·038) at 6 months. Interpretation Oral fluoxetine 20 mg daily for 6 months after acute stroke did not improve functional outcome and increased the risk of falls, bone fractures, and epileptic seizures. These results do not support the use of fluoxetine to improve functional outcome after stroke

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF
    corecore